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The  accuracy of a  spectral interpolation method is studied on  sampled pseudoper iodic 
signals. An attempt is made  to compute the accuracy of the characteristics of a  particular 
component  in terms of the remaining components  contribution. The  weighting effect is shown 
to improve the characteristics computat ion by  reducing the remaining components  contribu- 
tion to an  order of l/N’, where N is the number  of the samples. The  noise effect and  the 
proximity effect are analyzed and  the spectral interpolation is compared with a  time domain 
method derived from a  Kumaresan Tufts procedure.  0 1991 Academic Press. Inc. 

I. 1NTRo~ucT10N 

The  analysis of a  large number  of physical phenomena requires calculations 
of periodic or pseudoperiodic components of various signals given by the 
measurements devices output. A set of discrete values corresponding to the time  
evolution of a  signal must generally be  analyzed. These values are usually obtained 
by sampling at regular time  intervals of parameters describing the evolution of the 
phenomenon.  Numerical results must often be  analyzed in a  similar manner  as 
shown in [l, 21. 

A line shape fitting method based on  the analysis of the peaks in the discrete 
spectrum has been  described in [3] for identifying pseudoperiodic components of 
a  signal defined by a  set of discrete values for which no  weighting function is used. 
The  purpose of this paper  is to study the accuracy of such methods and  to explain 
the expected improvement by using weighting functions. The  “line shape fitting 
method” is in some sense an  interpolation of the values defined in the frequency 
doma in; therefore the method is called “a  spectral interpolation.” 

II. THE SPECTRAL INTERPOLATION METHOD 

II. 1. Backgvound 

Let us consider a  signal g(t) sampled at regular time  t, = rT/N, where T is the 
duration of the observation in seconds, N is the number  of samples. And we have 
0  d  r d N - 1. In other words T is the width of the window function which will be  
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SPECTRAL 1NTERPOLATION METHODS 31 

used for the analysis of the complete signal g(t) defined in the time interval 
- CC < t < + co. Furthermore we define: 

gr = s(tr), r=O, 1, . . . . N- 1. (1) 

These sampled data are supposed to satisfy the Shannon condition (sampling 
frequencies are greater than twice the largest frequency of the signal) in such a way 
that no aliasing phenomenon is present [4, 51. 

The discrete Fourier transform of the function g(t) corresponding to the 
frequency interval l/T is given by Eq. (2): 

Gj = $ Ni’ g, exp( - i2mj/N), j=O, 1 , . . . . N/2. 
r=O 

In general, the values G , do not provide the exact spectrum of the function g(t); 
particularly if periodic components are present in the signal, the peaks of the 
spectrum are not equal to the amplitude of the periodic components except for 
very special cases for which the frequency peak is an integer multiple of l/T; this 
has been shown to be a result of the leakage effect [3]. Thus it is not possible to 
determine the amplitude and the frequency of the various components in the signal 
from the knowledge of the G j values. The spectral interpolation described in [3] is 
useful to compute the values of amplitudes and frequencies. 

11.2. Definition of the Pseudoperiodic Signals 

The signals concerned with the method are assumed to consist of a superposition 
of a finite number of very distinct and weakly damped periodic components. We 
thus have 

1 N-l 

g, = - 
2 

C A, exp( X2, t,) + Jk exp( - 22, I,) + w( t,), r=O, 1, . . . . N- 1, (34 
k=O 

for a real signal and 
N-l 

g,= 1 Akexp(iQkzr)+ w(lr), r=O, 1, . . . . N- 1, 
k=O 

(3b) 

for a complex signal, where we have 

A,=a,+ib, (4) 

(5) 

with ak, bk, A,, wk real and 11,1 + 1; w(t,) represents a low level noise. 
As was shown in [3], the integer k takes values between 0 and N - 1; however, 

only some values of A, are nonzero since the signal is assumed to consist of distinct 
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components. For the sake of simplicity, we only present the calculation related to 
a complex signal. For a real signal the analysis needs to be slightly modified but 
the procedure for numerical calculation is essentially identical; specifically, the 
amplitude of a real signal as computed by using an algorithm based on the input 
of a complex signal only needs to be multiplied by two. 

The use of weighting functions different from the rectangular window function is 
expected to provide more accurate values of the pseudoperiodic components; 
specifically by reducing the so-called leakage effect as described in Harris [6]. This 
paper concerns only the effect of a Hanning window although the method can be 
applied to other weighting functions. We thus define the weighted signal as 

d=h,gr, r=O, 1, . . . . N- 1, 
where 

h,= 1 
for a rectangular window 

h, = 1 - i [exp(i2zr/N) + exp( - i2zr/N)] r=O, 1, . . . . N- 1 

for a Hanning window. 

11.3. Error Computation 

11.3.1. Rectangular Window 

For a rectangular window, Eqs. (2), (3b), and (6) yield 

Gj=kNg’Ak 1 -exp[-&T+i(w,T-2zj)] 
+ L Nf’ w, exp( - i27crj/N). 

k-0 1 -exp[-&T+i(WkT-2zj)]/N N r=O 

(6) 

(7) 

(8) 

Pa) 

Equation (9a) shows that there is no obvious direct relation between that values G, 
and A, except for those components for which the frequencies wk are integer 
multiples of the frequency interval do = 2x/T. For these particular components with 
j = K and ok = K2njT, we have 

G =A l-expWKT)+~ N-1 
1 Ak 

1 -exp[-&T+i(w,T-2zj)] 
K K 

AKT Nk=O,k,K 1 -exp[-I,T+i(o,T-27cj)]/N 

+ $ N$l w, exp( - i2nrj/N), 
r-0 

Pb) 

provided that I, is small. 
It can be seen that if all the values II, vanish for k running from 0 to N- 1, we 

have 

GK=A,+ 0 i + W(K), 
0 
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where 0(1/N) is the contribution of the remaining components and W(K) is the 
noise contribution. 

In the latter case, G , thus directly yields the value of A, disregarding the 
contribution of the noise. The term 0(1/N) shows that the contribution of the 
remaining components is of order l/N. More generally, the frequency of a 
component can be related to two successive integer multiples of do as 

Kdwdw,d(K+l)do (loa) 
or 

(K-l)do<o,6Kdw. (lob) 

In practice, K corresponds to the values ofj for which G , is a peak in the spectrum 
despite the leakage effect. Equations (10) can be expressed as 

oK= (K+ Ed) 277/T, with 1 > IsKI. (1Oc) 

The interpolation method consists in determining .sk from which wk is then obtained 
by using Eq. (10~). We can isolate the contribution of the peak of order K in 
Eq. (9a) and Eq. (2) yields 

G, =$AK 
1 -exp[i2n(F,T-j)] 

1 -exp[i(2n/N)(F,T- k)] 

1 Ni’ A, 
+z k=O,k?kK 

(lla) 

where we have 

for k running from 0 to N - 1 and 

W(j) = the discrete Fourier transform of the noise w(t,). 

For the values K of the integer j, the contribution of the peak of order K is 
dominant compared with that of the remaining components. We thus have 

G  =A 
K K 

l -expzK+~ 
K 

-zK 0 
f + W(K), 

where we have 
zK=i27c(FKT-K)= -LKT+i2mK 

N-1 

OK L =_f_ 1 A, 
0 

1 - exp i27c(F, T- K) 
N N k=O.k#K 1 - exp i $ (Fk T- K) 

(13) 

(14) 
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Similarly for j = K+ 1 and j = K- 1, we have 

(15) 

(16) 

The line shape fitting method described in [3] needs the calculation of the 
differences 

Sf=GK-GK+l (17) 
S- =GK-GK-,. (18) 

These quantities involve the difference of terms as O,( l/N) - O,- ,( l/N). It can be 
easily shown that for sufficiently high value of N we have 

X 

1 
> (19) 

where pk = zkli27c. 
Equation (19) shows that the contribution of the components of order k different 

from K is of order l/N* in the computation of S+. A similar derivation leads to a 
similar result for the value of the difference S-. The essence of the procedure con- 
sists in determining the parameter &k, from which ok is then obtained by using 
Eq. (lob). The value of &k is deduced from that of the complex number zk defined 
in Eqs. (13) and (20): 

s+ GK-GK+, i2n+zK -= 
=- S- G,-G (20) 

K-1 i271- zK’ 

Equations (12), (15), (16), (19), and (20) show that the contribution of the 
components of order k different from K-that are the so-called “remaining 
components”-is of order l/N2 and we have 

zK = i2n 
G K+l -GK-, 

2G,-G,,,-G,-; (21) 
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It should be noticed that the contribution of the noise has been partly eliminated 
in the calculation of zK as was shown in [3], provided that its Fourier transform 
is gradually varying. 

11.3.2. Use of Hannitig Window 
We present in this section the effect of the Hanning window function on the error 

computation involved in the method [7]. Equations (2), (3.b) (6) (8) yield 

1 -exp i27c(FKT-j) 
1 - exp i(2n/N)(F,T- j) 

1 
-- 2NAK 

1 i27c(F,T- j- 1) -exp 
1 i(2rc/N)(F,T- j- -exp 1) 

1 
AK 

1 i2z(FKT-j+ 1) -exp -- 
2N 1 -exp i(2z/N)(FKT- j+ 1) 

where O ,( l/N) is defined in Eq. (14). 
For j= K, the contribution of the component of order K is predominant as it was 

for the case of a rectangular window. We thus have 

G  =A, -exp(i2npK) + o 1 1 
K i27c -PLK KN 0 

1 A, 1 -exp(i2rrlK) 1 
2 i27c 

o 
-pK+l -z K+’ 

lAK ---. l-y.;(i~yK)poK~, 2 i271 0 ; + W(K), 
K 

where pLK is defined in Eq. (22), 

pk = zk Ji2n (22) 

and zk is defined in Eq. (13). 
Further calculations lead to Eq. (23), 

GK= AK& %K)[l -exp(i2npK)1 + c(K) + W(K), 

where we have 

and 

p(pK) = 
1 

PK@K + l )(PK- 1) 

(23) 

(24) 

(25) 
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The ak values represent the contribution of the remaining components. It should be 
noticed that in some sense the leakage effect is illustrated by the multiplicative 
factor before A, and the additive factor ak is a part of the error. It is easy to show 
that this error is significantly reduced compared with the error defined in the case 
of the rectangular window if one writes Eq. (25) in the following form: 

a(K)=~[OK($)-OK-l(~)]-~[OK+l (+)-OK(f)]. 
After some manipulations, Eq. (19) yields successively 

i271 N-l 

a(K)=2NZ k=O,kZK 
c 

A, exp i(4z/N)(k + pk - K)( 1 - exp z,)[exp( - i2n/N) - exp( f i2n/N)] 
x [l-exp(i2rr/N)(k+~~- K- l)] 

x [ 1 - exp(i2n/N)(k + pk - K)][ 1 - exp(i2n/ZV)(k + ,uk - K+ l)] 
-4rr2 N-1 

a(K)=7 C 
k=O,k#K 

AK eXp i(4n/N)(k -t & - K)(l - eXp zk) 
x [l -exp(i2n/N)(k+s,-K- l)] 2 

x [l -exp(i27r/N)(k+/.&-K)][l -exp(i27r/N)(k+/&-K+ I)] 

provided that N is sufficiently large. 
The latter expression shows that ok is of order i/N3 while its value is of order 

l/N in the case of a rectangular window. We thus have 

a(K) = 0( 1/N3). (26) 

It is now possible to compute the values Gj for j = K+ 1 and j = K- 1. This leads 
to the equations: 

[l -exp(i2rrpK)] +a(K+ l)+ W(K+ 1) (27) 

[l - exp(i2rcp,)] + a(K- 1) + W(K- 1). (28) 

As was shown in the case of a rectangular window, the values zk and pk are com- 
puted by using the ratio (G, - G,, i)/(Gk - G,- i) in order to partly eliminate the 
noise contribution. We thus have 

G,-GK,, PK-2 zK + i4n GK-GK-,l --= --. 
PK+2 zK - i47c (29) 
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We can now determine the complex value zk. It represents a complex value of the 
complex frequency shift similar to that was introduced by Feit and Fleck [S]. We 
have 

G 
zK = i471 K+,-GK--I 

2GK-GK+,-GK--I’ 

Equations (23, (24), (26), (30) show that the improvement expected by using a 
Hanning window function is achieved. The previous development also illustrates 
the mechanism of reduction of the error by using the contiguous values of the 
spectrum. This is an answer to a question of Feit and Fleck [8]. 

III. COMPUTATION OF THE COMPONENTS'  CHARACTERISTICS 

From Eqs. (1 lb), (21), and (30) the complex frequency can be determined by the 
formulae 

G 
zK = i2m K+l -G,-1 

2G,- GK, t - GK~ I 

Ea=&Imi;,) (33) 

where we have 

v=l for a rectangular window 

v=2 for a Hanning window. 

The complex amplitudes are derived by using the values of zk and 
=K-GK+I- G,_ ,. This technique is a local interpolation as described in [3], 
since the contiguous values of G,, G, + I and G, _ , have been used. It can be 
shown that this leads to 

AK=@GK-GK+I--K-, I)  
z,(& + 41t2) 

8n2( 1 - exp zK) 

for a rectangular window and to 

AK=(=K-GK+,-GK-I) 
in(4 - pi) 

WP,K~ -exPzK) 
(36) 
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for a Harming window function, where zk is defined in Eq. (13) and P(,B~) in 
Eq. (24). The accuracy of these values depends upon the accuracy of zk and ,u~ 
values and the efficiency in eliminating the noise contribution. 

An alternative method for computing the complex amplitudes consists of 
resolving the linear system related to amplitude values once the frequencies and 
damping are computed. This technique is a global method [S] and it is used in the 
time domain methods. This will be described in Section IV. 

IV. APPLICATIONS OF THE METHOD 

IV. 1. Application of the Method to a Class of Signals Encountered in 
a Nuclear Magnetic Resonance Field (NMR) 

The spectral interpolation is applied to a theoretical signal defined in Eq. (37). 
This signal is similar to those encountered in a NMR field. It is a superposition of 
eight components constituted of two groups of the so-called triplets centered 
around 1 and 3 KHz and a group of doublets around 9 Khz: 

g(rdt)= 5 akexp[(-II,+i271fk)rAt+iqk)]. 
j=l 

(37) 

The results are reported in Table I. Each component has been computed by using 
rectangular and Hanning function. On each line of the Table I, the actual value and 
calculated values are reported. The improvement of the accuracy is observed. The 
weighted data are more accurate and exhibit one more significant digit than the 
unweighted data. 

The error exhibited in the third line for each component is the lowest one; specili- 
tally, the computed amplitude exhibits error of order 10P2 and the damping values 
exhibit errors of order lo-’ for weighted data instead of respectively about 10-l 
and lop4 for the rectangular one. More generally, the frequencies and the damping 
values are more accurate than the amplitudes and phases values. The reason lies in 
the essence of the method that involves the use of the frequency shift for the 
computation of the complex frequency. In other words, the error propagated into 
the frequency calculation is only due to the error exhibited in the calculation of the 
frequency shift. 

It should be noted that the effective accuracy is much lower than the one predicted 
by the theory in Eqs. (12) (26), (27). This is essentially due to the proximity effect, 
that is to say, the proximity of frequencies inside the triplet and the doublet of the 
signal. Further investigations of the proximity effect are shown in [7]. We only 
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TABLE I 

Comparison between the Actual Values of the Components Characteristics for 
a Signal Delined in Eq. (37) 

k  
ak .f; 

arbitrary units @Hz)  (k& 
dk 

(degrees) 

1 
Rectangular 
Hanning 

2 

2.0 
1.932124 
2.008280 

3.0 
2.983196 
2.999190 

0.95 0.0 0.0 
0.949832 0.000493 2.86 
0.950024 0.00006 1 -0.41 

1.00 0.0 0.0 
0.999849 0.00040 2.74 
1.000027 - 0.000020 -0.49 

3 2.0 1.05 0.0 0.0 
I .926941 1.050162 -0.COO463 -2.65 
2.007846 1.049980 0.000053 0.34 

4 2.0 3.00 0.0 0.0 
1.925751 2.999802 0.000567 3.43 
2.009946 3.000030 0.000076 -0.52 

5 4.0 3.05 0.0 0.0 
3.980471 3.049906 -0.000016 3.44 
4.000910 3.050017 -0.OOWO3 -0.29 

6 2.0 3.10 0.0 0.0 
1.913719 3.100187 -0.000513 -3.10 
1.985926 3.100062 -0.000158 -1.17 

7 8.0 9.00 0.0 - 90.0 
7.906643 8.999874 -0.000315 -81.56 
8.024332 9.000026 0.oOOO66 - 90.49 

8 8.0 9.05 0.0 90.0 
8.145153 9.049903 0.000241 91.66 
7.979368 9.050015 - 0.000038 89.73 

Note. N = 2048; do = 0.50 ms. The signal is not noised. The calculations are performed in double 
precision on an IBM PC. 

present some numerical tests in order to point out the degradation of the accuracy 
for very close frequencies. The tests were performed on the signal defined in 
Eq. (38) that consists of two components with frequencies only separated by some 
percents of kilohertz. The proximity parameter e is defined as this distance between 
two frequencies. This value is the number of the numerical linewidths l/T. The 
accuracy is then degraded by decreasing the values of the parameter e: 

g(t) = a, exp( -A, t) cos(2nf, t + cpr) 

(38) 



40 RAJAONA AND SULMONT 

The calculations have been performed on a set N= 2048 samples, a time interval 
At = 0.05 ms. We also have $r = & = E,, = A, =O. The quantity e takes values 
running from 0 to 13. The results are presented in Fig. 1, where the evolution of the 
number of significant digits is shown versus the values of the parameter e. It can 
be seen that the number of significant digits is reduced by half as soon as the 
proximity parameter value is lower than 12. The method is not able to separate the 
components for the values of e lower than 3. 

Another test is the analysis of the noise effect; this is important to appreciate 
some measurement of the reliability of the method for real signals. Such a test 
has been performed on a theoretical signal defined in Eq. (39), where we have 
superimposed a synthesized white noise: 

g(t) = a exp( -At) cos(2nft + cp) + w(t). (39) 

The noise w(t) is generated by the classical routines RANDU and GAUSS. The 
parameters values are a = 1.0, f = 1 Khz, 4 = 0, 2 = 0, N = 2048, and At = 0.5 ms. 
The mean value of w(t) is zero. The results reported in Fig. 2 illustrate the evolution 
of the significant digits versus the noise variance c?. The computations are per- 
formed in double precision on an IBM-compatible PC. It can be seen that the loss 
of accuracy is important since the number of significant digits is halved as soon as 
the noise variance takes the value 0.01. However, the computed values remain 
reasonably accurate for the frequency and the damping and, to a lesser extent, for 
the amplitude and the phase. 
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Number of Numerical Linewidths 

FIG. 1. Numerical experiments showing the proximity effect. The number of significant digits versus 
the numerical linewidths number e. The signal g(f) is given by Eq. (38); N= 2048; @, = Q2 = A, = 1, = 0; 

f, = 3 kHz; f2 = f, + efr AI = 0.05 ms. 
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FIG. 2. Numerical experiments showing the noise effect. The number of significant digits versus the 
noise variance o*. The signal g(t) is given by Eq. (39); N= 2048; @  = i = Cl; f = 3kHz; w(t) = 0; 
A f = 0.05 ms. 

TV.2. Comparison of the Present Method with That of Ref: [lo] 

This section is devoted to the comparison of the spectral interpolation method 
with a time domain method. It is well known that the retrieval of the components 
characteristics of pseudoperiodic signals can be achieved by using a time domain 
approach that does not need the calculation of the discrete Fourier transform. The 
selected signal for the analysis is a simulated and a real NMR free induction decay 
(FID) of ethanol. The main difficulty of the analysis lies in the quartet around 
1.0 KHz which is very difficult to depict. 

IV.2.1. Review of the Method of Ref: [7] 
The time domain method-the so-called LPSVD (linear prediction singular value 

decomposition)-is based on a linear prediction method. It is derived from a 
Kumaresan and Tufts method [ll]. The value of the signal at time t, is assumed 
to be a linear combination of the K previous (or future) values. The LPSVD 
method is an autoregressive (AR) method. An extensive list of time domain 
methods can be found in the paper by Kay and Marple [9]. We have focused the 
comparison with the method developed by de Beer and Van Ormondt. It can be 
shown that a signal consisting of a superposition of K damped real sinusoids, 
Eq. (40) can be expressed in terms of an AR model of order 2K, Eq. (41): 

K 

g,= 1 C,exp(-A,rdt)cos(2~fkrdt+qk)+w(rdt) 
k=l 

(40) 

gr=al g,-, +a,g,-,+ ... +aMgrpM, with r = 1, 2, . . . . N. (41) 
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M is the AR order and M = 2K. The first step of the method is to compute the a, 
values by using the matrix expression of Eq. (40). The numerical resolution is a 
least square method. ‘Specifically, the linear system to be solved is 

CGICAI = Cgl, (42) 

where 

[G] is a 2K x (N- 2K) matrix 

[A] is the column of the N - 2K autoregressive coefficients 

[g] is the column of N - 2K samples g,. 

An efficient method based upon the singular value decomposition of the matrix 
[G] is then used to compute the autoregressive coefficients. 

The second step is the calculation offk and & by solving a polynomial of order 
M. It is shown that the roots of the polynomial of Eq. (43) are conjugate complex 
and the real and imaginary parts are respectively related to the damping and the 
frequency. For a large value of M, numerical instabilities can occur during the root 
calculation in Eq. (43), 

Z 2K -a,zzK-‘- ... -a2Kp,z-aa2K=0, (43) 

and this makes the use of the method delicate. 
The last step is the computation of the amplitudes C, and the phases dk. At this 

stage a second linear system is solved, since Eq. (40) is equivalent to Eq. (44): 

,$, Ck 
cos (Pk exp( -Akr At) cos(hfkr At) 

- f Ck sin (Pi exp( -,l,r At) sin(2rcfkr At) = g,. 
k=l 

(44) 

IV.2.2. Results and Discussions 

The analysis of both simulated and experimental NMR FID of ethanol is 
illustrated in Tables II and III. In Table II the results obtained by using the LPSVD 
method [9] are compared with those of the present method in the case of a signal 
without noise. One can find the actual values on the first line. For a number of 
samples equal to 1024 there is no error in computing the components charac- 
teristics by using LPSVD. The LPSVD algorithm has been implemented by de Beer 
and Van Ormondt on a SUN-3/160 workstation in single precision while the inter- 
polation spectral method results are obtained from an IBM PC in double precision 
in order to allow the comparison; N= 4096 samples were needed for the analysis. 
The results obtained by the spectral method are reasonably accurate. The 
computing times are quite different because about 21 min are needed for the 
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TABLE II 

Parameters of Eight Damped Sinusoids, Fitted to the Simulated NMR FID of Ethanol (without Noise) 

ak fk Ik 4k 
k arbitrary units (kHz) Wz) (degrees) 

1 
LPSVD 41.19 0.4697 -0.0135 0.0 
FFT 41.79 0.4697 -0.013500 0.0 

t PSVD 
FFT 

3 
LPSVD 
FFT 

4 
LPSVD 
FFT 

5 
LPSVD 
FFT 

6 
LPSVD 
FFT 

7 
LPSVD 
FFT 

8 
LPSVD 
FFT 

50.00 1.0311 -0.0028 0.0 
51.00 1.031091 -0.002757 1.4 

150.00 1.0381 -0.0028 0.0 
149.71 1.038101 -0.002804 0.0 

150.00 1.0451 -0.0028 0.0 
150.10 1.045102 -0.002798 -0.4 

50.00 1.0521 -0.0028 0.0 
49.58 1.052106 -0.002816 -0.8 

150.00 2.2662 -0.0028 0.0 
148.56 2.266200 - 0.002801 -0.1 

300.00 2.2732 - 0.0028 0.0 
299.86 2.273201 -0.002801 -0.1 

150.00 2.2802 -0.0028 0.0 
149.35 2.280204 -0.002808 -0.7 

Note. N = 1023 for LPSVD; N = 4096 for FFT. The exact values are set to be the values computed 
by the LPSVD method. 

LPSVD method while only 2 min are required for the FFT method. It should be 
noted that for the case of a signal without noise the components are accurately 
computed by LPSVD method even if only 300 samples are used. 

The results corresponding to the real signal shown in Fig. 3 are reported in 
Table III. It can be seen that the accuracy in computing frequencies is quite similar. 
However, the FFT technique exhibits a more stable evolution of the phases and 
more accurate values of the amplitudes. This means that the use of the LPSVD 
technique cannot be separated from difficulties related to the noise effect; specifi- 
cally, the choice of significant frequencies is a determinant, since it should be related 
to the number of components M. In addition, when the number of samples is large, 
numerical instabilities can occur in the polynomial roots calculation. A method 
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FIG. 3. First 4096 data points of the experimental NMR FID of Ethanol. 

involving a direct resolution of the matrix in Eq. (42) is shown in [9] by using 
Hankel singular value decomposition. Although no polynomial root finding is 
needed, the computing time remains very long and the method requires a greater 
memory allocation; at last the lack of stability in phase values is also observed. 

The effect of frequency shift is illustrated in Fig. 4. The quartet is analyzed and 
the values computed by using direct FFT (symbol “P) are compared with those 
obtained by the interpolation method (“I”). 

IV.3. Application of the Method to a Class of Numerical Signals Encountered 
in an Optical Field 

It should be instructive to examine some results obtained by applying the method 
to a class of signals encountered in an optical field. Those signals usually describe 
a complex potential [S]. The analysis is shown on the case of a theoretical complex 
signal defined in Eq. (45) 

s(t)= f exp(-iiPkfL (45) 
k=l 

where Bk = pi + ij?:. 
Such a signal is similar to a correlation function and is useful for studying the 

mode properties of optical fibers with lossy components [S]. It should be noticed 
that the present method does not require a specific algorithm for the analysis of a 
complex signal. This constitutes a significant advantage compared with the 
algorithms used in the time domain methods for which specific algorithms are 
required respectively for real and complex signals. 



SPECTRAL INTERPOLATION METHODS 45 

TABLE III 

Parameters of the Eight Largest Damped Sinusoids, Fitted to the Experimental NMR FID of 
Ethanol Measured by Haasnoot et al., University of Nymegen [9] 

k 
4 .fk 

arbitrary units (kHz) (k& 
dk 

(degrees) 

1 
LPSVD 
FFT 

0.4699 -0.0149 -6X.9 
0.4696 -0.0107 -63.3 

333 
339.1 

L 

LPSVD 
FFT 

3 
LPSVD 
FFT 

4 
LPSVD 
FFT 

5 
LPSVD 
FFT 

6 
LPSVD 
FFT 

7 
LPSVD 
FFT 

8 
LPSVD 
FFT 

81 1.030 -0.008 11.0 
54 1.0310836 -0.00204 -60.5 

90 1.0379 - 0.0030 -129 
150.0 1.037925 -0.002181 -55 

264 1.0470 - 0.004 -129 
148 1.0450 -0.002081 -51 

365 1.0498 -0.015 -28 
47 1.0520 -0.001458 -49 

209 2.2658 -0.00 -128 
141 2.2658 -0.00197 -39 

315 2.2728 -0.00 70 
267 2.2729 -0.0024 -33 

173 2.2803 -0.00 84 
128 2.2800 -0.0016 -27 

Note. N= 1024 for the time domain method; N=4096 for the spectral method 

The results are shown in Table IV. A comparison with the results published by 
Feit and Fleck is made. It can be seen that the single-line lit used in the present 
spectral interpolation leads to results in good agreement with those of Feit et al. 
These authors have used a multiple line least square fit for their test. 

In order to show how sensitive the present method is, another numerical test has 
been performed on a signal defined in Eq. 46, where the fourth component has a 
very low amplitude value compared with the nine others (0.00s against l.O), 

s(t)= f A,exp{(-iB;+B:),}+A,exp 
k= l;k#4 

{( -i(Pk+e$)+Pi) I}, (46) 

where A 4 = 0.005 and A j = 1.0 for j running from 1 to 10 and j # 4. 
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FIG. 4. Spectral analysis of the quartet of the experimental NMR FID of Ethanol. The data-points 

are weighted by a Hanning function. The symbols “a” are the direct FFT results Gj (Eq. (2)). The 
vertical lines are related to the spectral interpolation (Eqs. (31) to (36)). 

TABLE IV 

Comparison between the Actual Values of the Complex Frequencies for a Spectrum with 
Ten Peaks and the Values Predicted by the Method Used in [8] and in the Present Study 

Actual 
values 

Computed values Computed values 
multiple line least square single line tit 

(Ref. PI) (present method) 

1.0 800.0 0.0 1.OOOOOO 800.0000 2.14 
1.0 760.0 0.0 1.OOOOOO 760.0000 2.01 
1.0 720.0 0.0 1.oooooO 720.0000 1.97 
1.0 680.0 0.0 1.OOOOOO 680.OOoO 2.09 
1.0 640.0 0.0 1.OOOOOO 640.0000 2.33 
1.0 600.0 0.0 l.OOOOOO 600.0000 2.34 
1.0 560.0 0.0 l.OOOOOO 560.0000 2.22 
1.0 520.0 0.0 u3ooooo 520.0000 2.08 
1.0 480.0 0.0 l.oooooO 480.0000 1.98 
1.0 440.0 0.0 1.OOOOOO 44o.oooo 1.95 

l.OOOOOO 0.59 800.0000 -7.97 
1.OOOOOO 0.79 760.0000 4.69 
1.000000 - 1.14 720.0000 4.83 
1.OOOOOO - 2.77 680.OOoO 2.71 
l.OOOOOO 3.26 640.0000 1.14 
l.OOOOOO 2.00 600.0000 4.09 
1.OOOOOO 0.12 560.0000 5.25 
l.OOOOO4 - 1.80 520.0000 4.32 
l.OOOOOQ -3.14 480.000@ 1.41 
1OOOOOO 1.91 440.0000 3.92 

Nore. The amplitudes A, are complex in the present method. N = 8200; dt = 0.00375 cm. 
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The proximity effect is accounted by introducing the parameter e in Eq. (46) as 
was done in Section IV.2. The results are shown in Table V for e = 180 and for the 
values of the other parameters identical to those presented in Table IV. It can be 
seen that the accuracy of the computed values are very good. However, the /?h value 
related to the fourth component is computed with an error of 1.17 x lo- * instead 
of values around lo- lo for the remaining components. A similar observation can be 
made for the argument value of the complex amplitude A,. This lack of accuracy 
is due to the low value of the fourth component amplitude. This means that the 
sensitivity of the method can be analyzed by decreasing the values of the proximity 
parameter e and by counting the number of significant digits for the characteristics 
components. 

Such a test has been performed and the results are illustrated in Figs. 5 to 8. For 
the sake of simplicity we have focused our analysis on the fourth and fifth 
components, since the accuracy of the remaining components’ characteristic values 
is similar to that of the fifth one. The proximity parameter values e run from 3 to 
180; for each value of e, the number of significant digits related to the real spatial 
frequency /I; and the absolute value of A, are shown on Figs. 5 and 7. The 
computed values of the damping j3: and the argument of A, are illustrated in 
Figs. 6 and 8. For each value of e the results corresponding to the fifth component 
(A, = 1.0) are shown by the symbol “A” and those related to the fourth component 
(A, = 0.005) by the symbol “0.” 

It can be seen that the accuracy is significantly lowered for the fourth component. 
Specifically, for large values of e (e higher than 40), the number of significant digits 
of the real part of fl is halved and we have 7 instead of 13; however, it remains 
reasonable. For moderate values of e the number of significant digits is still 

TABLE V 

Analysis of a Signal Having a Very Low Amplitude Component 

Actual values Computed values 

AMA,) 
n A” Arg(AJ PL 8; ‘4, x lo8 lx fi:, x 1O’O 

1 1.0 0.0 
2 1.0 0.0 
3 1.0 0.0 
4 0.005 0.0 
5 1.0 0.0 
6 1.0 0.0 
I 1.0 0.0 
8 1.0 0.0 
9 1.0 0.0 

10 1.0 0.0 

8oo.oooo 0.0 l.OOOOOO 
760.0000 0.0 1.OOOOOO 
720.0000 0.0 l.OOOOOO 
676.8155 0.0 5.OOOc00 x lo-’ 
64O.OOW 0.0 l.OOOOOO 
600.0000 0.0 1OOOOOO 
560.0000 0.0 1.OQOOOO 
520.0000 0.0 l.OOOOOO 
480.0000 0.0 l.OOOOOO 
440.0000 0.0 1000000 

- 1.84 8oo.oooo 0.95 
-0.33 76O.OOoO 2.93 

1.07 720.0000 0.98 
- 3.02 676.8155 117.0 
-3.65 640.0000 1.80 

2.17 600.0000 0.51 
- 0.05 560.0000 3.44 
-2.27 520.0000 1.08 
-0.14 480.0000 2.99 

1.36 440.0000 0.93 

Note. The signal is defined in Eq. (46); e = 180, N = 8200, At = 0.00375 s. 

581.97 1-4 
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FIG. 5. Analysis of the sensitivity of the spectral interpolation method for the number of signiticant 
digits of p; and & values. The complex signal is detined in Eq. (46); N= 8192; dl= 0.00375 cm. 
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FIG. 6. Analysis of the sensitivity of the spectral interpolation method for the computed values of Bh 
and pi; the actual values are /3: = 83 =O. The complex signal is detined in Eq. (46); N= 8192; 
At = 0.00375 cm. 
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FIG. 7. Analysis of the sensitivity of the spectral interpolation method for the number of significant 
digits of Mod(A,) and Mod(A,) values. The complex signal is defined in Eq. (46); N= 8192; 
Af = 0.00375 cm. 

reasonable (higher than 11 for b; and equal to 7 for 8;). For low values of e 
(e < lo), the accuracy is clearly degraded and the number of significant digits falls 
down respectively to 8 for /I; and to 3 for /X, (Fig. 5). 

Figure 6 illustrates the evolution of the computed values of the imaginary part 
of /? versus the number of the numerical linewidths e. It can be seen that the values 
corresponding to the fifth component are very accurate (10-l’ instead of 0.0); in 
addition, these values are not modified by the proximity of the fourth component. 
The imaginary part values fla are less accurate. 

The number of significant digits of the module iA,1 for n = 4, 5 and the computed 
values of Arg(A,) are respectively shown in Figs. 7 and 8. These values are less 
accurate than those related to the complex frequencies as was already observed in 
the case of real signals. Once again the number of significant digits is roughly halved 
for the fourth component characteristic values compared with those of the fifth 
component values (Fig. 7). At last the most illustrative graphs to show the accuracy 
degradation are in Figs. 8a and b. The arguments Arg(A,) take values up to 123” 
instead of 0.0” for very low values of e (Fig. 8a). It can be seen that the error 
growth is quasi-exponential (Fig. 8a). In the case of two very close frequencies 
for which we have a small amplitude line near a high amplitude line, a multiple 
line least square fit should be preferred in lieu of a single line fit as was observed 
by Feit et al. 
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FIG. 8. Analysis of the sensitivity of the spectral interpolation method for the computed values of 
Arg(A,) and Arg(A,); the actual values are Arg(A,)=Arg(A,)=O. The complex signal is defined in 
Eq. (46); N = 8192; Ar = 0.00375 cm. 

These numerical tests show that two spectral lines four numerical linewidths 
apart can be distinguished; however, the accuracy can be dramatically lowered. 
In practice the method is reliable for values of the parameter e higher than 10. 
The computations corresponding to Tables IV, V, and Figs. 5 to 8 have been 
performed on a Vax 8700 in double precision. The number of samples was 
N= 8192; the spatial step was 0.00375 cm. 
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V. CONCLUSIONS 

The accuracy of the spectral method described in [3] has been studied. The error 
has been expressed in terms of the contribution of the remaining components. The 
mechanism of reducing the error has been clearly demonstrated by using the peak 
of the spectrum for which three consecutive values are used. In addition, it has been 
shown that the analysis of data weighted by a Hanning window function naturally 
involves the foregoing procedure and leads to higher accuracy. The efficiency of the 
method has been compared with a time domain method. The following concluding 
remarks can be given: 

~ The spectral interpolation is a reliable method for computing the com- 
ponents of a pseudoperiodic signal. The frequency and damping calculations are 
more accurate compared with the complex amplitude calculations. This is due to 
the fact that the complex amplitudes are computed by using the complex frequency 
shift that is likewise computed with some errors. 

- A parameter responsible for degrading the accuracy is the proximity 
parameter that is in some sense a measurement of the distance between two 
frequencies. The spectral interpolation is able to separate the quartet frequencies 
of an NMR FTD of ethanol for a duration of observation of 750 ms, including 
4096 samples. 

- The sensitivity of the method is related to its capability to depict a low 
amplitude spectral line in the vicinity of a high-amplitude spectral line. Numerical 
tests have shown that, in general, about 10 numerical linewidths are required to 
give a reasonable accuracy. 

- A comparison of the spectral interpolation with a time domain method 
shows that the width of the window function must be sufficiently large in order to 
increase the frequency separation capability. Once the frequencies are separated the 
spectral method is very numerically efftcient. On the other hand, the time domain 
method is able to compute the characteristics of the components even for a low 
number of the samples. Unfortunately, the computation of very close frequencies 
requires a large number of samples. As a consequence, numerical instabilities 
and prohibitive time computation cannot be avoided. At last, in the case of the 
real ethanol signal, a loss of stability in the phase calculation is observed. This 
means that the LPSVD method is very sensitive to the noise effect and to the 
sample number. 

- At last, the method has been also applied to the analysis of both theoreti- 
cal and experimental hydrodynamic phenomena [7, 23. These investigations have 
been devoted essentially to the study of vortex shedding in the flow past a circular 
cylinder at subcritical Reynolds numbers. 
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