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The accuracy of a spectral interpolation method is studied on sampled pseudoperiodic
signals. An attempt is made to compute the accuracy of the characteristics of a particular
component in terms of the remaining components contribution. The weighting effect is shown
to improve the characteristics computation by reducing the remaining components contribu-
tion to an order of 1/N?, where N is the number of the samples. The noise effect and the
proximity effect are analyzed and the spectral interpolation is compared with a time domain
method derived from a Kumaresan Tufts procedure.  © 1991 Academic Press, Inc.

I. INTRODUCTION

The analysis of a large number of physical phenomena requires calculations
of periodic or pseudoperiodic components of various signals given by the
measurements devices output. A set of discrete values corresponding to the time
evolution of a signal must generally be analyzed. These values are usually obtained
by sampling at regular time intervals of parameters describing the evolution of the
phenomenon. Numerical results must often be analyzed in a similar manner as
shown in [1,2].

A line shape fitting method based on the analysis of the peaks in the discrete
spectrum has been described in [3] for identifying pseudoperiodic components of
a signal defined by a set of discrete values for which no weighting function is used.
The purpose of this paper is to study the accuracy of such methods and to explain
the expected improvement by using weighting functions. The “line shape fitting
method” is in some sense an interpolation of the values defined in the frequency
domain; therefore the method is called “a spectral interpolation.”

II. THE SPECTRAL INTERPOLATION METHOD

I1.1. Background

Let us consider a signal g(¢) sampled at regular time ¢, =rT/N, where T is the
duration of the observation in seconds, N is the number of samples. And we have
0<r<N—1. In other words T is the width of the window function which will be
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SPECTRAL INTERPOLATION METHODS 31

used for the analysis of the complete signal g(z) defined in the time interval
— o0 < t < + 0. Furthermore we define:

g, =gt), r=01.,N-1 (1)

These sampled data are supposed to satisfy the Shannon condition (sampling
frequencies are greater than twice the largest frequency of the signal) in such a way
that no aliasing phenomenon is present [4, 5].

The discrete Fourier transform of the function g(¢) corresponding to the
frequency interval 1/T is given by Eq. (2):

1 N1

G, =5 ZO g, exp(—i2nrj/N),  j=0,1,.., N/2. (2)

r

In general, the values G, do not provide the exact spectrum of the function g(7);
particularly if periodic components are present in the signal, the peaks of the
spectrum are not equal to the amplitude of the periodic components except for
very special cases for which the frequency peak is an integer multiple of 1/T; this
has been shown to be a result of the leakage effect [3]. Thus it is not possible to
determine the amplitude and the frequency of the various components in the signal
from the knowledge of the G, values. The spectral interpolation described in [3] is
useful to compute the values of amplitudes and frequencies.

11.2. Definition of the Pseudoperiodic Signals

The signals concerned with the method are assumed to consist of a superposition
of a finite number of very distinct and weakly damped periodic components. We
thus have

B —

N—1
g, =z 3 A exp(iQut,)+ A, exp(—iQ,t,)+w(t,), r=0,1,.,N—1, (3a)
k=0

for a real signal and

N-—1
g.= Y. A, exp(iQ.t,)+w(t,), r=0,1,.,N—1, (3b)
k=0

for a complex signal, where we have
Ak = ak + lbk (4)
Qk = l'lk + CL)k (5)

with a,, b, Ay, @, real and |4,| < 1; w(t,) represents a low level noise.
As was shown in [3], the integer k takes values between 0 and N — 1; however,
only some values of 4, are nonzero since the signal is assumed to consist of distinct
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32 RAJAONA AND SULMONT

components. For the sake of simplicity, we only present the calculation related to
a complex signal. For a real signal the analysis needs to be slightly modified but
the procedure for numerical calculation is essentially identical, speciﬁcally, the

amnlituda ~AF 0 ranl cignal 2o Anaa otmg am alonrithie hocad Ao sha Sl

ampiiiua o1 a réai Signar as buuq,)uu:u u_y uamg ail digoriinm based on the mput
of a complex signal only needs to be multiplied by two.

The use of weighting functions different from the rectangular window function is
expected to provide more accurate values of the pseudoperiodic components;
specifically by reducing the so-called leakage effect as described in Harris [6]. This
paper concerns only the effect of a Hanning window although the method can be
applied to other weighting functions. We thus define the weighted signal as

gh=hg., r=0,1,.,.N—1, (6)
where
h=1 (7)
for a rectangular window

h,=1—4[exp(i2nr/N) + exp(—i2nr/N)] r=0,1,.,N—1 (8)

for a Hanning window.

I1.3. Error Computation

I1.3.1. Rectangular Window
For a rectangular window, Egs. (2), (3b), and (6) yield

1 N! 1 —exp[ — 4, T+ i(w, T—2mj)] 1"”l
— —i2nrj/N). (9
G=5 X T oxpl I T i T2 N T W &, ¥ *P(—i2ari/N). (92)

Equation (9a) shows that there is no obvious direct relation between that values G,
and A, except for those components for which the frequencies w, are integer
multiples of the frequency interval Aw =2nr/T. For these particular components with
j=K and w, = K2n/T, we have

l—exp(—lKT)+l Ni‘ 1—exp[— 4, T+ i{w, T—27j)]
AT N Eiix “1—exp[ =4, T+i(w,T—2mj)]/N

GK=AK

1 N—-1
+— Y w,exp(—i2nrj/N), (9b)
Nr=0
provided that 1. is small.
It can be seen that if all the values 4, vanish for k£ running from 0 to N—1, we
have

GK—AK+0( >+ W(K), (9¢c)
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where O(1/N) is the contribution of the remaining components and W(K) is the
noise contribution.

In the latter case, G, thus directly yields the value of A, disregarding the
contribution of the noise. The term O(1/N) shows that the contribution of the
remaining components is of order 1/N. More generally, the frequency of a
component can be related to two successive integer multiples of 4w as

Kdo<og<(K+1) dw (10a)
or
(K—1) do < ox< K do. (10b)

In practice, K corresponds to the values of j for which G, is a peak in the spectrum
despite the leakage effect. Equations (10) can be expressed as

wx=(K+eg)2n/T, with 12 |egl. (10c)

The interpolation method consists in determining ¢, from which w, is then obtained
by using Eq. (10c). We can isolate the contribution of the peak of order K in
Eq. (9a) and Eq. (2) yields

o —lA 1 —exp[i2n(Fx T — j)]
TN TR —expli2n/NWF T~ k)]

P Nt | —expli2n(F, T—j)] .
+Nk:(§¢1< ST explLiCa/NIF, T— )1 T b (11a)
where we have
FomQufin=i T4 fy= Tt (b 7 (11b)
2n on T

for k running from 0 to N—1 and
W(j)=the discrete Fourier transform of the noise w(t,).

For the values K of the integer j, the contribution of the peak of order K is
dominant compared with that of the remaining components. We thus have

1 —ex 1
Gr=Ay—PIK o <—>+ W(K), (12)
—Zx N
where we have
Zx=D20(FxT— K)= —Ax T+ i2ney (13)
1 1 Nt 1l —exp i2n(F, T—K)
O« (N)“N Y 4, . (14)

- 2
k=0kek l—expiﬁn(FkT—K)
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Similarly for j=K+1 and j=K— 1, we have

l—expz 1
GK+1=AK_—ZK:?;+0K+1(N>+W(K+1) (15)
1—e 1
Gy \=Ax——=PZK 0 <~)+ W(K—1). (16)
—zg—i2n N

The line shape fitting method described in [3] needs the calculation of the
differences

S+=GK_GK+1 (17)
S =Gx—Gx_,. (18)

These quantities involve the difference of terms as O (1/N)— O _ (1/N). It can be
easily shown that for sufficiently high value of N we have

27.[ N—1
ZW Z Ak
k=0k+#K

[1—expz] [exp 1’2—7r (k— K+ ,uk):|
N
X (19)

2n 2n ’
l:l~expiﬁ(k—K+uk):“:1—expiﬁ(k—K+,uk—1)}

where u, =z, /i2m.

Equation (19) shows that the contribution of the components of order & different
from K is of order 1/N? in the computation of S*. A similar derivation leads to a
similar result for the value of the difference S~. The essence of the procedure con-
sists in determining the parameter ¢,, from which w, is then obtained by using
Eq. (10b). The value of ¢, is deduced from that of the complex number z, defined
in Egs. (13) and (20):

§:_GK_GK+l_i2n+ZK
S T Gx—Gg |, 2n—zg

(20)

Equations (12), (15), (16), (19), and (20) show that the contribution of the
components of order k different from K—that are the so-called “remaining
components”—is of order 1/N? and we have

GK+1 _GK—l
2GK’_GK+1_GK71

zx=1i2n (21)
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It should be noticed that the contribution of the noise has been partly eliminated
in the calculation of z, as was shown in [3], provided that its Fourier transform
is gradually varying.

11.3.2. Use of Hanning Window

We present in this section the effect of the Hanning window function on the error
computation involved in the method [7]. Equations (2), (3.b), (6), (8) yield

1 1 —exp 2r(Fx T — j) 1
G =4 (=~
I TN KT Zexp iRa/N)(Fr T — j)+0’<N>

1 l—exp2n(FeT—j-1) 1, (1
2N X1 —expi2n/N)FcT—j—1) 2 7*'\WN

1 1—expi2n(FxT—j+1) 1 (1 .
- —=0, (= |+ W
N Kl —expi2n/NYFxT—j+1) 2 77 '"\WN + W),

where O;(1/N) is defined in Eq. (14).
For j= K, the contribution of the component of order K is predominant as it was
for the case of a rectangular window. We thus have

Agx 1—exp(i2ruy) 1
Gy="=—7"—7--—"- —
K i — g +O0x N
1 Ag 1—exp(i2nug,) 1 1
=0 =
2i2n —pg+1 2 N
1 A 1—exp(i2rug) 1 1
2027 —pe—1 2 Ok <N> + WIK),
where p, is defined in Eq. (22),
He =2z, /i2m (22)
and z, is defined in Eq. (13).
Further calculations lead to Eq. (23),
1
GK=AKE P(pu)[1 —exp(i2npg)] + o(K) + W(K), (23)

where we have
1
g+ 1) (pg—1)

1 1 1 1 1
G(K)=0K<]T/>—§0K1<N>——2‘0K+1(N>- (25)

Plug)=

and
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The o, values represent the contribution of the remaining components. It should be
noticed that in some sense the leakage effect is illustrated by the multiplicative
factor before A, and the additive factor g, is a part of the error. It is easy to show
that this error is significantly reduced compared with the error defined in the case
of the rectangular window if one writes Eq. (25) in the following form:

=30 ()0 (]-Howe ()03

After some manipulations, Eq. (19) yields successively

oK)= Y

2N2 k=0, k#K
Agexpi(dn/N)(k+ p, — K)(1 —exp z,)[exp(—i2rn/N) —exp(+i2n/N)]
[1—exp(2r/N)}k + p— K—1)]
x [1 —exp(i2n/N)(k + p, — K)J[1 —exp(2n/N Yk + pu, — K+ 1)]

—4p2 N1

)

3
N k=0,k#K

a(K)=

Agexpi(dn/N)k+ pu,— K)(1 —exp z,)
Tl —exp(2n/N)(k + 5, — K—1)] :
x [1—exp(i2n/N)k+ u,— K)]J[1 —exp(i2n/N)k + pu,— K+ 1)]

provided that N is sufficiently large.
The latter expression shows that o, is of order 1/N? while its value is of order
1/N in the case of a rectangular window. We thus have

o(K)=O(1/N?). (26)

It is now possible to compute the values G, for j=K+1 and j=K— 1. This leads
to the equations:

1 -1 .
Gro =AKE£P(.”K)ZKT [1—exp(i2nug)]+o(K+1)+ W(K+1)  (27)
K

1 +1 .
Greoy = Ars— P(ie) P2 [1—exp(i2np)] + 0(K— 1)+ W(K—1).  (28)
2in Ux—2
As was shown in the case of a rectangular window, the values z, and yu, are com-

puted by using the ratio (Gx— G, ,)/(Gx— Gx_,) in order to partly eliminate the
noise contribution. We thus have

GK_GK+1__ _/JK—Z_ _ZK+i47'C
Gx—Gx_ |,  px+2  zx—idn

(29)
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We can now determine the complex value z,. It represents a complex value of the
complex frequency shift similar to that was introduced by Feit and Fleck [8]. We
have

GK+ 1 GK\ 1
26— Ggi1— Gk

(30)

Zx=14n

Equations (23, (24), (26), (30) show that the improvement expected by using a
Hanning window function is achieved. The previous development also illustrates
the mechanism of reduction of the error by using the contiguous values of the
spectrum. This is an answer to a question of Feit and Fleck [8].

III. COMPUTATION OF THE COMPONENTS’ CHARACTERISTICS

From Egs. (11b), (21), and (30) the complex frequency can be determined by the
formulae

GK+1_GK—I

Z=1i2mv (31)
* 26— Gy —Gx
-1
pe=""VReiz) (32)
T
1
tx =5 Im{z¢) (33)
1 Ag
F.= —4i— 34
P (6K+K)T+l27r’ (34)
where we have
v=1 for a rectangular window

v=2 for a Hanning window.

The complex amplitudes are derived by using the values of z, and
2Gx— Gy, —Gg_,. This technique is a local interpolation as described in [3],
since the contiguous values of G, G,, and G,_, have been used. It can be
shown that this leads to

zx(z% +4n%)

AK=(ZGK“GK+1‘GK‘1)8n_2(1__ex—pz ‘) (35)
K
for a rectangular window and to
in(4— uk
Ag= (265G, - ) (36)

Ok 1) § Pl —exp 7x)
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for a Hanning window function, where z, is defined in Eq.(13) and P(y,) in
Eq. (24). The accuracy of these values depends upon the accuracy of z, and u,
values and the efficiency in eliminating the noise contribution.

An alternative method for computing the complex amplitudes consists of
resolving the linear system related to amplitude values once the frequencies and
damping are computed. This technique is a global method [8] and it is used in the
time domain methods. This will be described in Section IV.

IV. APPLICATIONS OF THE METHOD

IV.1. Application of the Method to a Class of Signals Encountered in
a Nuclear Magnetic Resonance Field (NMR)

The spectral interpolation is applied to a theoretical signal defined in Eq. (37).
This signal is similar to those encountered in a NMR field. It is a superposition of
eight components constituted of two groups of the so-called triplets centered
around 1 and 3 KHz and a group of doublets around 9 Khz:

glrat)= Y a,exp[(—A,+i2nf)r At +ig,)]. (37)

j=1

The results are reported in Table I. Each component has been computed by using
rectangular and Hanning function. On each line of the Table I, the actual value and
calculated values are reported. The improvement of the accuracy is observed. The
weighted data are more accurate and exhibit one more significant digit than the
unweighted data.

The error exhibited in the third line for each component is the lowest one; specifi-
cally, the computed amplitude exhibits error of order 10 2 and the damping values
exhibit errors of order 10~° for weighted data instead of respectively about 10~
and 10 * for the rectangular one. More generally, the frequencies and the damping
values are more accurate than the amplitudes and phases values. The reason lies in
the essence of the method that involves the use of the frequency shift for the
computation of the complex frequency. In other words, the error propagated into
the frequency calculation is only due to the error exhibited in the calculation of the
frequency shift.

It should be noted that the effective accuracy is much lower than the one predicted
by the theory in Eqgs. (12), (26), (27). This is essentially due to the proximity effect,
that is to say, the proximity of frequencies inside the triplet and the doublet of the
signal. Further investigations of the proximity effect are shown in [7]. We only
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TABLE I

Comparison between the Actual Values of the Components Characteristics for
a Signal Defined in Eq. (37)

a Je Ak Pk
k arbitrary units (kHz) (kHz) (degrees)
1 20 0.95 0.0 0.0
Rectangular 1.932124 0.949832 0.000493 2.86
Hanning 2.008280 0.950024 0.000061 —-041
2 30 1.00 0.0 0.0
2983196 0.999849 0.00040 2.74
2.999190 1.000027 —0.000020 -0.49
3 20 1.05 0.0 0.0
1.926941 1.050162 —0.000463 ~2.65
2.007846 1.049980 0.000053 0.34
4 2.0 3.00 0.0 0.0
1.925751 2.999802 0.000567 343
2.009946 3.000030 0.000076 —-0.52
5 40 3.05 0.0 0.0
3.980471 3.049906 —0.000016 344
4.000910 3.050017 —0.000003 —-0.29
6 2.0 3.10 0.0 0.0
1.913719 3.100187 —0.000513 —3.10
1.985926 3.100062 —0.000158 —1.17
7 8.0 9.00 0.0 —90.0
7.906643 8.999874 —0.000315 —87.56
8.024332 9.000026 0.000066 —90.49
8 8.0 9.05 0.0 90.0
8.145153 9.049903 0.000241 91.66
7.979368 9.050015 —0.000038 89.73

Note. N=2048; 4¢t=0.50 ms. The signal is not noised. The calculations are performed in double
precision on an IBM PC.

present some numerical tests in order to point out the degradation of the accuracy
for very close frequencies. The tests were performed on the signal defined in
Eq. (38) that consists of two components with frequencies only separated by some
percents of kilohertz. The proximity parameter e is defined as this distance between
two frequencies. This value is the number of the numerical linewidths 1/7. The
accuracy is then degraded by decreasing the values of the parameter e:

g(t)=al exp(— 4, 1) cos(2nfit+ @)

+a, exp(—A,t) cos [2n <f1+e%)t+(p2]. (38)



40 RAJAONA AND SULMONT

The calculations have been performed on a set N =2048 samples, a time interval
4t=005ms. We also have ¢,=¢,=4,=4,=0. The quantity e takes values
running from 0 to 13. The results are presented in Fig. 1, where the evolution of the
number of significant digits is shown versus the values of the parameter e. It can
be seen that the number of significant digits is reduced by half as soon as the
proximity parameter value is lower than 12. The method is not able to separate the
components for the values of e lower than 3.

Another test is the analysis of the noise effect; this is important to appreciate
some measurement of the reliability of the method for real signals. Such a test
has been performed on a theoretical signal defined in Eq. (39), where we have
superimposed a synthesized white noise:

g(t)y=aexp(—At) cos(2nft + @) + w(?). (39)

The noise w(z) is generated by the classical routines RANDU and GAUSS. The
parameters values are a=1.0, f=1Khz, ¢ =0, A=0, N=2048, and 4t=0.5 ms.
The mean value of w(t) is zero. The results reported in Fig. 2 illustrate the evolution
of the significant digits versus the noise variance o°. The computations are per-
formed in double precision on an IBM-compatible PC. It can be seen that the loss
of accuracy is important since the number of significant digits is halved as soon as
the noise variance takes the value 0.01. However, the computed values remain
reasonably accurate for the frequency and the damping and, to a lesser extent, for
the amplitude and the phase.
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FIG. 1. Numerical experiments showing the proximity effect. The number of significant digits versus
the numerical linewidths number e. The signal g(¢) is given by Eq. (38); N=2048; &, =P, =4, =4,=0;
f1=3kHz; f,=f,+¢/T; At=0.05 ms.



SPECTRAL INTERPOLATION METHODS 41

20 -~ s s s s s m e m
f I
! [
2 : Frequency : O :
g | Amplitude : A |
a 15-de .
o l Damping : { l
€ | I
= Phase b4
o I 1
Q
= ! !
E10Fewe - — — = — - — - - — -~ b e e - !
9 | I
n ! I
N— [1=) o o 0 o | 1
° ° ° [) 6 o6 0o 0o  o0m 0o !
o S a ! |
0 o -2 .73 ta 73 A a A a a !
£ & : !
> 1 I
Z [ !
O o e e e A LA I e o Tlr T T T T T T T T %
2 4 6 8 10 12

Variance*10%x2

F1G. 2. Numerical experiments showing the noise effect. The number of significant digits versus the
noise variance ¢2 The signal g(¢) is given by Eq.(39); N=2048; &=i=0; f=3kHz; w(r)=0;
At =0.05 ms.

1V.2. Comparison of the Present Method with That of Ref. [10]

This section is devoted to the comparison of the spectral interpolation method
with a time domain method. It is well known that the retrieval of the components
characteristics of pseudoperiodic signals can be achieved by using a time domain
approach that does not need the calculation of the discrete Fourier transform. The
selected signal for the analysis is a simulated and a real NMR free induction decay
(FID) of ethanol. The main difficulty of the analysis lies in the quartet around
1.0 KHz which is very difficult to depict.

IV.2.1. Review of the Method of Ref. [7]

The time domain method—the so-called LPSVD (linear prediction singular value
decomposition)—is based on a linear prediction method. It is derived from a
Kumaresan and Tufts method [11]. The value of the signal at time ¢, is assumed
to be a linear combination of the K previous (or future) values. The LPSVD
method is an autoregressive (AR) method. An extensive list of time domain
methods can be found in the paper by Kay and Marple [9]. We have focused the

comparison with the method developed by de Beer and Van Ormondt. It can be
. ! — L : I : ) PR .

~Eq. (40), can be expressed in terms of an AR model of order 2K, Eq. (41):

K
g.= Y C,exp(—~A,r At) cos(2nf,r At + @) + w(r At) (40)

k=1

g, =a,8 _1+ar g, _++ - +ayug,_wm with r=1,2,..,N. (41)
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M is the AR order and M =2K. The first step of the method is to compute the a,
values by using the matrix expression of Eq. (40). The numerical resolution is a
least square method. Specifically, the linear system to be solved is

[G1[4]=[zg], (42)
where

[G]isa2Kx (N—2K) matrix
[ 47 is the column of the N — 2K autoregressive coefficients

[ g] is the column of N — 2K sampiles g,.

An efficient method based upon the singular value decomposition of the matrix
[G] is then used to compute the autoregressive coefficients.

The second step is the calculation of £, and 2, by solving a polynomial of order
M. Tt is shown that the roots of the polynomial of Eq. (43) are conjugate complex
and the real and imaginary parts are respectively related to the damping and the
frequency. For a large value of M, numerical instabilities can occur during the root
calculation in Eq. (43),

2K g K1

—‘"‘—aZK,IZ_GZK:O, (43)
and this makes the use of the method delicate.

The last step is the computation of the amplitudes C, and the phases ¢,. At this
stage a second linear system is solved, since Eq. (40) is equivalent to Eq. (44):

K
Y C, cos ¢ exp(—Acr At) cos(2nf, r At)

k=1

K
— Y C,sin @, exp(—4,r A1) sinQnfir At) = g,. (44)

k=1

1V.2.2. Results and Discussions

The analysis of both simulated and experimental NMR FID of ethanol is
illustrated in Tables IT and ITL. In Table II the results obtained by using the LPSVD
method [9] are compared with those of the present method in the case of a signal
without noise. One can find the actual values on the first line. For a number of
samples equal to 1024 there is no error in computing the components charac-
teristics by using LPSVD. The LPSVD algorithm has been implemented by de Beer
and Van Ormondt on a SUN-3/160 workstation in single precision while the inter-
polation spectral method results are obtained from an IBM PC in double precision
in order to allow the comparison; N = 4096 samples were needed for the analysis.
The results obtained by the spectral method are reasonably accurate. The
computing times are quite different because about 21 min are needed for the
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TABLE 1II
Parameters of Eight Damped Sinusoids, Fitted to the Simulated NMR FID of Ethanol (without Noise)

A fe Ak Pk
k arbitrary units (kHz) (kHz) (degrees)
1
LPSVD 41.79 0.4697 —0.0135 0.0
FFT 41.79 0.4697 —0.013500 0.0
2
LPSVD 50.00 1.0311 —0.0028 0.0
FFT 51.00 1.031091 —0.002757 1.4
3
LPSVD 150.00 1.0381 —0.0028 0.0
FFT 149.71 1.038101 —0.002804 0.0
4
LPSVD 150.00 1.0451 —0.0028 0.0
FFT 150.10 1.045102 —0.002798 —-04
S
LPSVD 50.00 1.0521 —0.0028 0.0
FFT 49.58 1.052106 —0.002816 —-0.8
6
LPSVD 150.00 2.2662 —0.0028 0.0
FFT 148.56 2.266200 —0.002801 —-0.1
7
LPSVD 300.00 2.2732 —0.0028 0.0
FFT 299.86 2.273201 —0.002801 —-0.1
8
LPSVD 150.00 2.2802 —0.0028 0.0
FFT 149.35 2.280204 —0.002808 —-0.7

Note. N =1023 for LPSVD; N =4096 for FFT. The exact values are set to be the values computed
by the LPSVD method.

LPSVD method while only 2 min are required for the FFT method. It should be
noted that for the case of a signal without noise the components are accurately
computed by LPSVD method even if only 300 samples are used.

The results corresponding to the real signal shown in Fig. 3 afe reported in
Table I1I. It can be seen that the accuracy in computing frequencies is quite similar.
However, the FFT technique exhibits a more stable evolution of the phases and
more accurate values of the amplitudes. This means that the use of the LPSVD
technique cannot be separated from difficuities related to the noise effect; specifi-
cally, the choice of significant frequencies is a determinant, since it should be related
to the number of components M. In addition, when the number of samples is large,
numerical instabilities can occur in the polynomial roots calculation. A method
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FiG. 3. First 4096 data points of the experimental NMR FID of Ethanol.

involving a direct resolution of the matrix in Eq. (42) is shown in [9] by using
Hankel singular value decomposition. Although no polynomial root finding is
needed, the computing time remains very long and the method requires a greater
memory allocation; at last the lack of stability in phase values is also observed.

The effect of frequency shift is illustrated in Fig. 4. The quartet is analyzed and
the values computed by using direct FFT (symbol “4”) are compared with those
obtained by the interpolation method (“|”).

1V.3. Application of the Method to a Class of Numerical Signals Encountered
in an Optical Field

It should be instructive to examine some results obtained by applying the method
to a class of signals encountered in an optical field. Those signals usually describe
a complex potential [8]. The analysis is shown on the case of a theoretical complex
signal defined in Eq. (45)

10
g(t)= 3, exp(—ift), (45)
k=1
where B, = B% + iB%.

Such a signal is similar to a correlation function and is useful for studying the
mode properties of optical fibers with lossy components [8]. It should be noticed
that the present method does not require a specific algorithm for the analysis of a
complex signal. This constitutes a significant advantage compared with the
algorithms used in the time domain methods for which specific algorithms are
required respectively for real and complex signals.
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TABLE III

Parameters of the Eight Largest Damped Sinusoids, Fitted to the Experimental NMR FID of
Ethanol Measured by Haasnoot et al., University of Nymegen [9]

a, f Ak ok

Jk

k arbitrary units (kHz) (kHz) (degrees)
1
LPSVD 333 0.4699 —0.0149 —689
FFT 339.1 0.4696 —0.0107 —63.3
2
LPSVD 81 1.030 —0.008 11.0
FFT 54 1.0310836 —0.00204 —60.5
3
LPSVD 90 1.0379 —0.0030 -129
FFT 150.0 1.037925 —0.002181 —55
4
LPSVD 264 1.0470 —0.004 —-129
FFT 148 1.0450 —0.002081 -5t
5
LPSVD 365 1.0498 —0.015 —28
FFT 47 1.0520 —0.001458 —49
6
LPSVD 209 2.2658 —0.00 —128
FFT 141 2.2658 —0.00197 -39
7
LPSVD 315 2.2728 —0.00 70
FFT 267 2.2729 —0.0024 -33
8
LPSVD 173 2.2803 —0.00 84
FFT 128 2.2800 —0.0016 -27

Note. N =1024 for the time domain method; N =4096 for the spectral method.

The results are shown in Table IV. A comparison with the resuits published by
Feit and Fleck is made. It can be seen that the single-line fit used in the present
spectral interpolation leads to results in good agreement with those of Feit er al.
These authors have used a multiple line least square fit for their test.

In order to show how sensitive the present method is, another numerical test has
been performed on a signal defined in Eq. 46, where the fourth component has a
very low amplitude value compared with the nine others (0.005 against 1.0),

10 . 2n .
f0= T Acop{(iBi+ B} +dserp{(—i(pireF)4pi)if o

k=1k#4 T

where 4,=0.005 and 4, = 1.0 for j running from 1 to 10 and j#4.
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FiG. 4. Spectral analysis of the quartet of the experimental NMR FID of Ethanol. The data-points
are weighted by a Hanning function. The symbols “A” are the direct FFT results Gj (Eq. (2)). The
vertical lines are related to the spectral interpolation (Egs. (31) to (36)).

TABLE IV

Comparison between the Actual Values of the Complex Frequencies for a Spectrum with
Ten Peaks and the Values Predicted by the Method Used in [8] and in the Present Study

Computed values Computed values
Actual multiple line least square single line fit
values (Ref. [8]) (present method)
Arg(4,)

4, B, B A, B B x 10" A, x10° B B % 10°
1.0 8000 0.0  1.000000 800.0000 2.14 1.000000 0.59 800.0000 -797
1.0 7600 0.0  1.000000 760.0000 2.01 1.000000 0.79 760.0000 4.69
1.0 7200 0.0  1.000000 720.0000 1.97 1.000000 —1.14 720.0000 4.83
1.0 6800 00  1.000000 680.0000 2.09 1.000000 —-2.77 680.0000 27
1.0 6400 00  1.000000 640.0000 233 1.000000 3.26 640.0000 1.14
1.0 6000 00  1.000000 600.0000 234 1.000000 2.00 600.0000 4.09
1.0 5600 0.0  1.000000 560.0000 222 1.000000 0.12 560.0000 5.25
1.0 5200 0.0  1.000000 520.0000 2.08 1.000000 —1.80 520.0000 4.32
1.0 4800 0.0 1.000000 480.0000 1.98 1.000000 —-3.14 480.0000 1.41
1.0 4400 00  1.000000 440.0000 1.95 1.000000 1.91 440.0000 392

Note. The amplitudes 4, are complex in the present method. N = 8200; Ar=0.00375 cm.
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The proximity effect is accounted by introducing the parameter ¢ in Eq. (46) as
was done in Section IV.2. The results are shown in Table V for e =180 and for the
values of the other parameters identical to those presented in Table IV. It can be
seen that the accuracy of the computed values are very good. However, the §} value
related to the fourth component is computed with an error of 1.17 x 10~ 2 instead
of values around 10~ '° for the remaining components. A similar observation can be
made for the argument value of the complex amplitude 4,. This lack of accuracy
is due to the low value of the fourth component amplitude. This means that the
sensitivity of the method can be analyzed by decreasing the values of the proximity
parameter ¢ and by counting the number of significant digits for the characteristics

components.
ch.d est ha heen nepformed gp the resnlts are illustrated in Fios Sta & For

1s simlar to that ot the hith one. The proximity parameter values e run from 3 to
180; for each value of e, the number of significant digits related to the real spatial
frequency B’ and the absolute value of A4, are shown on Figs.5 and 7. The
computed values of the damping B} and the argument of A, are illustrated in
Figs. 6 and 8. For each value of e the results corresponding to the fifth component
(A5 =1.0) are shown by the symbol “A” and those related to the fourth component
(A4,=0.005) by the symbol “1.”

It can be seen that the accuracy is significantly lowered for the fourth component.
Specifically, for large values of e (e higher than 40), the number of significant digits
of the real part of f is halved and we have 7 instead of 13; however, it remains
reasonable. For moderate values of e the number of significant digits is still

TABLE V

Analysis of a Signal Having a Very Low Amplitude Component

Actual values Computed values
Arg(4,)

n A,  Argl4,) B B A, x 10° B B x10%
1 1.0 0.0 800.0000 0.0 1.000000 —1.84 800.0000 095
2 1.0 0.0 760.0000 0.0 1.000000 —033 760.0000 293
3 1.0 0.0 720.0000 0.0 1.000000 1.07 720.0000 0.98
4 0.005 0.0 676.8155 0.0 5.000000 x 10 -3 —3.02 676.8155 117.0
5 1.0 0.0 640.0000 0.0 1.000000 —3.65 640.0000 1.80
6 1.0 0.0 600.0000 0.0 1.000000 217 600.0000 0.57
7 1.0 0.0 560.0000 0.0 1.000000 —0.05 560.0000 3.44
8 1.0 0.0 520.0000 0.0 1.000000 —2.27 520.0000 1.08
9 1.0 0.0 480.0000 0.0 1.000000 —0.14 480.0000 299

10 10 0.0 440.0000 0.0 1.000000 1.36 440.0000 0.93

Note. The signal is defined in Eq. (46); e = 180, N =8200, 47 =0.00375s.

581/97:1-4
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F1G. 5. Analysis of the sensitivity of the spectral interpolation method for the number of significant
digits of 8 and 8% values. The complex signal is defined in Eq. (46); N =8192; 4¢=0.00375 cm.
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FIG. 6. Analysis of the sensitivity of the spectral interpolation method for the computed values of
and B%; the actual values are B4=pB5=0. The complex signal is defined in Eq. (46); N=28192;
Ar=0.00375 cm.
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Fic. 7. Analysis of the sensitivity of the spectral interpolation method for the number of significant
digits of Mod(4,) and Mod(A4;s) values. The complex signal is defined in Egq.(46); N=8192;
4t =0.00375 cm.

reasonable (higher than 11 for f% and equal to 7 for f%). For low vailues of e
(e < 10), the accuracy is clearly degraded and the number of significant digits falls
down respectively to 8 for f% and to 3 for g} (Fig. 5).

Figure 6 illustrates the evolution of the computed values of the imaginary part
of § versus the number of the numerical linewidths e. It can be seen that the values
corresponding to the fifth component are very accurate (10~ '° instead of 0.0); in
addition, these values are not modified by the proximity of the fourth component.
The imaginary part values B are less accurate.

The number of significant digits of the module |4,| for n=4, 5 and the computed
values of Arg(A4,) are respectively shown in Figs. 7 and 8. These values are less
accurate than those related to the complex frequencies as was already observed in
the case of real signals. Once again the number of significant digits is roughly halved
for the fourth component characteristic values compared with those of the fifth
component values (Fig. 7). At last the most illustrative graphs to show the accuracy
degradation are in Figs. 8a and b. The arguments Arg(4,) take values up to 123°
instead of 0.0° for very low values of ¢ (Fig. 8a). It can be seen that the error
growth is quasi-exponential (Fig. 8a). In the case of two very close frequencies
for which we have a small amplitude line near a high amplitude line, a multiple
line least square fit should be preferred in lieu of a single line fit as was observed
by Feit et al.
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FiG. 8. Analysis of the sensitivity of the spectral interpolation method for the computed values of
Arg(A,) and Arg(4s); the actual values are Arg(A,)=Arg(4s)=0. The complex signal is defined in
Eq. (46); N=8192; 4t =0.00375 cm.

These numerical tests show that two spectral lines four numerical linewidths
apart can be distinguished; however, the accuracy can be dramatically lowered.
In practice the method is reliable for values of the parameter e higher than 10.
The computations corresponding to Tables IV, V, and Figs.5 to 8 have been
performed on a Vax 8700 in double precision. The number of samples was
N =8192; the spatial step was 0.00375 cm.
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V. CONCLUSIONS

The accuracy of the spectral method described in [3] has been studied. The error
has been expressed in terms of the contribution of the remaining components. The
mechanism of reducing the error has been clearly demonstrated by using the peak
of the spectrum for which three consecutive values are used. In addition, it has been
shown that the analysis of data weighted by a Hanning window function naturally
involves the foregoing procedure and leads to higher accuracy. The efficiency of the
method has been compared with a time domain method. The following concluding

remarks can be given:

— The spectral interpolation is a reliable method for computing the com-
ponents of a pseudoperiodic signal. The frequency and damping calculations are
more accurate compared with the complex amplitude calculations. This is due to
the fact that the complex amplitudes are computed by using the complex frequency
shift that is likewise computed with some errors.

— A . parameter responsible for degrading the accuracy is the proximity
parameter that is in some sense a measurement of the distance between two
frequencies. The spectral interpolation is able to separate the quartet frequencies
of an NMR FID of ethanol for a duration of observation of 750 ms, including
4096 samples.

— The sensitivity of the method is related to its capability to depict a low
amplitude spectral line in the vicinity of a high-amplitude spectral line. Numerical
tests have shown that, in general, about 10 numerical linewidths are required to
give a reasonable accuracy.

— A comparison of the spectral interpolation with a time domain method
shows that the width of the window function must be sufficiently large in order to
increase the frequency separation capability. Once the frequencies are separated the
spectral method is very numerically efficient. On the other hand, the time domain
method is able to compute the characteristics of the components even for a low
number of the samples. Unfortunately, the computation of very close frequencies
requires a large number of samples. As a consequence, numerical instabilities
and prohibitive time computation cannot be avoided. At last, in the case of the
real ethanol signal, a loss of stability in the phase calculation is observed. This
means that the LPSVD method is very sensitive to the noise effect and to the
sample number.

— At last, the method has been also applied to the analysis of both theoreti-
cal and experimental hydrodynamic phenomena [7, 2]. These investigations have
been devoted essentially to the study of vortex shedding in the flow past a circular
cylinder at subcritical Reynolds numbers.
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